Zur Thermodynamik des Systems Wasser—Triäthylamin _{Von}

F. Kohler, H. Arnold* und R. J. Munn**

Aus dem Institut für Physikalische Chemie der Universität Wien

Mit 15 Abbildungen

(Eingegangen am 4. Mai 1961)

Es wurde die Schmelzkurve des Systems Wasser(1)- Triäthylamin bis zu einem Molenbruch des Amins $x_2 = 0,60$ bestimmt. Damit wurden die Messungen von *Pickering*¹ und die genaueren Ergebnisse von *Sommerville*² im wesentlichen bestätigt. Doch erlaubte die gesteigerte Genauigkeit unserer Messungen die Festlegung der inkongruent schmelzenden Verbindung zu 3 H₂O · Et₃N (und nicht 2 H₂O · Et₃N), ein Ergebnis, das wir durch Analysen des Bodenkörpers sicherten.

Ferner ermöglichte die gesteigerte Genauigkeit eine thermodynamische Auswertung der Schmelzkurve. Aus dem Ast der Schmelzkurve, welcher der Primärkristallisation von Eis entspricht (von $x_2 = 0$ bis $x_2 = 0,327$), wurde der Aktivitätskoeffizient von Wasser berechnet und die Funktion $\log f_1/x_2^2$ gebildet. Diese Funktion zeigt zwischen $x_2 = 0,03$ und $x_2 = 0,04$ einen plötzlichen Anstieg von schwach negativen auf stark positive Werte (größer als 3). Dieser Anstieg entspricht früheren Befunden an den Systemen Trichlorbenzol-Hexan³ und Anilin-Cyclohexan³ sowie Wasser-Dioxan⁴, ist aber hier ganz besonders stark ausgeprägt. Um den Ast der Schmelzkurve, bei dem die Verbindung auskristallisiert, auswerten zu können, wurden zunächst die Aktivitätskoeffizienten der Komponenten unter Heranziehung von Daten einer früheren Arbeit⁵ für die entsprechenden Konzentrationen und Temperaturen extrapoliert. Damit konnte aus der

- ¹ S. U. Pickering, J. Chem. Soc. [London] 63, 181 (1893).
- ² W. C. Somerville, J. Physic. Chem. 35, 2412 (1931).

- ⁴ F. Kohler, Mh. Chem. 88, 408 (1957).
- ⁵ F. Kohler, Mh. Chem. 88, 388 (1957).

^{*} Gegenwärtige Adresse: Institut für Physikalische Chemie der Universität Halle-Wittenberg, Halle/Saale, DDR.

^{**} Gegenwärtige Adresse: Department of Physical and Inorganic Chemistry, The University, Bristol 8, England.

³ R. J. Munn und F. Kohler, Mh. Chem. 91, 381 (1960).

Schmelzkurve die thermodynamische Dissoziationskonstante der Verbindung, der Schmelzpunkt der undissoziarten Verbindung und die Summe von deren Dissoziationswärme und Schmelzwärme ermittelt werden. Für die Dissoziationswärme allein kann ein Mindestwert angegeben werden.

Zur Interpretation der hohen Dissoziationswärme der Verbindung gegenüber dem neutralen Wert der Dissoziationskonstanten wurde das *Eucken*sche Wassermodell⁶ herangezogen und das Dissoziationsgleichgewicht der Verbindung als Austauschgleichgewicht mit dem Viererassoziat des Wassers angesehen:

 $(3 H_2 O \cdot Et_3 N) + (H_2 O)_1 = (H_2 O)_4 + Et_3 N$

Schließlich wurde auf Grund von UV-Spektren der Prozentgehalt von nicht an Wasser gebundenem Amin in Abhängigkeit von Konzentration und Temperatur ermittelt. Damit und mit Hilfe des Euckenschen Wassermodells konnten unter vereinfachenden Annahmen die Aktivitätskoeffizienten der freien Triäthylaminmoleküle, der Verbindung und der Einermoleküle des Wassers bei 0° C und bei 15° C berechnet werden. Es ergibt sich, daß die Verbindung von Wasser wesentlich besser aufgenommen wird als freies Amin, während sie in Amin kaum besser aufgenommen wird als das in ihr enthaltene Wasser in Form von Einermolekülen. Anders ausgedrückt, die Verbindung vermittelt die Lösung von Amin in Wasser, kaum aber die Lösung von Wasser in Amin. Mit steigender Temperatur nimmt die Konzentration der Verbindung stark ab, vornehmlich wegen der Verschiebung des Verhältnisses zwischen Einer- und Vierermolekülen des Wassers auf die Seite der Einermoleküle. Damit verringert sich entsprechend der lösungsvermittelnde Einfluß besonders in wasserreichen Mischungen, und es kommt zuerst dort zur Phasentrennung.

I. Einleitung

Das System Wasser-Triäthylamin ist in den letzten Jahren recht intensiv bearbeitet worden. Die zusätzliche freie Mischungsenthalpie ΔG_z des Systems wurde zwischen 0° C und 18° C von Kohler⁷ auf Grund von Totaldruckmessungen angegeben. Ferner wurde in dieser Arbeit die Volumenänderung beim Mischen ΔV gemessen und die Mischungswärme ΔH aus der Temperaturabhängigkeit von ΔG_z berechnet. Diese Werte von ΔH wurden durch orientierende Messungen der Mischungswärme von Copp und Everett⁸ einerseits, Bellemans⁹ andererseits im wesentlichen bestätigt. Eine genaue Vermessung der Entmischungskurve durch Kohler und Rice¹⁰ führte⁵ zu verbesserten Werten von ΔG_z bei 18° C. Ziel der vorliegenden Arbeit war es, durch eine genaue Vermessung der Schmelzkurve einerseits genaue Angaben für die Aktivitätskoeffi-

⁶ A. Eucken, Z. Elektrochem. 52, 255 (1948).

⁷ F. Kohler, Mh. Chem. 82, 913 (1951).

⁸ J. L. Copp und D. H. Everett, Discuss. Faraday Soc. 5, 174 (1953).

⁹ A. Bellemans, J. Chem. Physics 21, 368 (1953).

¹⁰ F. Kohler und O. K. Rice, J. Chem. Physics 26, 1614 (1957).

zienten bei 0° C zu erhalten, andererseits ein quantitatives Maß für den Einfluß der Verbindungsbildung zu bekommen.

Eine wertvolle Ergänzung zu den bisher genannten Arbeiten liefern Studien, die auf Anregung von *Everett*¹¹ ausgeführt wurden sowie genaue Messungen von ΔH bei 15° C durch *Matizen* und *Kuskova*¹². Weiters sind neue Dampfdruckmessungen russischer Autoren zu erwähnen^{13, 14}.

¹¹ Zunächst wurde die Vermessung der Entmischungskurve von Kohler und Rice bestätigt (R. J. Munn, vorgetragen auf dem Symposium über Thermodynamik der IUPAC, Fritzens-Wattens, August 1959; wird in dem entsprechenden Sammelband veröffentlicht). Ferner wurden bei 4°C, 10°C und bei 18°C Dampfdrucke bestimmt (J. F. Counsell, Thesis, Bristol 1959); erst nach Fertigstellung des Manuskripts vorliegender Arbeit erhielten die Autoren Kenntnis von daraus berechneten ΔG_z -Werten (berechnet ohne Korrektur für die Nichtidealität der Dampfphase). Sie sind in Abb. 15 mit den

Abb. 15. $\Delta G_Z/x_1 x_3$ von Wasser(1)—Triäthylamin (in cal/mol); ————— diese Arbeit (Messungen der Schmelzkurve), 0°C; ------ nach Dampfdruckmessungen von Counsell, 4°C; ----- dieselbe Kurve korrigiert auf 0°C; ----- nach Dampfdruckmessungen von Kohler, 0°C⁷

Werten verglichen, die aus dieser Arbeit folgen sowie mit den etwas weniger genauen Messungen von Kohler⁷.

¹² E. V. Matizen und N. V. Kuskova, Zhur. Fiz. Khim. 34, 223 (1960).

¹³ I. R. Krichevskii, N. E. Khazanova, G. M. Svetlova und R. S. Panina, Zhur. Fiz. Khim. **34**, 2160 (1960).

¹⁴ A. W. Storonkin und N. P. Markuzin, Nachr. Leningrader Univ. 13, Nr. 4, Ser. Physik. Chem. Nr. 1 (1958). H. 4/1961] Zur Thermodynamik des Systems Wasser-Triäthylamin 879

II. Experimentelle Festlegung der Schmelzkurve

Es wurde Triäthylamin der Fluka AG, Buchs, puriss. p. a., mit fester Natronlauge stehengelassen, dann davon in einer wirksamen Kolonne abdestilliert, und schließlich wurde das Destillat nochmals sorgfältig fraktioniert destilliert (in einer Kolonne, die ca. 25 theoretischen Böden entspricht, und unter einem Rücklaufverhältnis von etwa 20:1). Das Produkt wurde möglichst rasch verwendet. Überschritt die Aufbewahrungszeit zwei Wochen, wurde nochmals destilliert.

Das zum Einsatz gelangende Wasser war unmittelbar vorher zum zweitenmal destilliert worden.

Die Aufnahme der Schmelzpunkte erfolgte nach der Arbeit von Munn und Kohler³. Wägeglas und Meßgefäß wurden vor dem Einfüllen der Mischung jeweils mit einem Luftstrom ausgespült, der durch vorgeschaltete Natronkalkröhrchen von Feuchtigkeit und CO₂ befreit wurde. Die Eichung des Thermistors erfolgte durch den Schmelzpunkt von Leitfähigkeitswasser und durch Vergleich mit einem geeichten, in $1/_{100}^{\circ}$ geteilten Beckmannthermometer. Dreimaliges Umstellen bei gleichen Widerstandswerten des Thermistors führte von 0° C bis — 24° C. Um auch das untere Ende des Bereiches durch einen Fixpunkt zu sichern, verglichen wir mit dem Schmelzpunkt von CCl₄. Für diesen erhielten wir — 22,86° C bzw. nach Korrektur für die Verunreinigungen (Molenbruch 0,0005), die nach Ausweis der Erwärmungskurve immer noch vorhanden waren, — 22,76° C.

Wir sahen diesen Wert zunächst als zu hoch an ¹⁵ und bemühten uns, alle denkbaren Fehlerquellen bei dem Vergleich zwischen Beckmannthermometer und Thermistor auszuschalten; doch blieb der Wert unverändert. Schließlich fanden wir, daß unser Wert mit einer neueren Bestimmung des Schmelzpunktes von CCl₄ ausgezeichnet übereinstimmt¹⁵. Zur Umrechnung der Widerstandswerte des Thermistors auf Temperatur bewährte sich diesmal eine Formel der Art

$$1/T = A \log R + BR + \Delta_r$$

worin A und B Konstanten bedeuten und Δ einen kleinen Korrekturterm darstellt, der als Funktion von R mit genügender Genauigkeit graphisch wiedergegeben werden konnte.

Die Resultate der Schmelzpunktsbestimmungen sind in Tab. 1 angegeben und in Abb. 1 zugleich mit den Messungen älterer Autoren dargestellt.

Eines besonderen Kommentars bedürfen die von *Munn* erhaltenen Ergebnisse. Dessen Versuche hatten mehr orientierenden Charakter und wurden mit einer primitiveren Regelung des Wärmeüberganges in das Meßgefäß

¹⁵ J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Elsevier 1950, gibt für den Schmelzpunkt von CCl₄ — 22,95° C. Doch führte A. K. Dunlop, Journ. Amer. Chem. Soc. 77, 2016 (1955) Schmelzpunktsbestimmungen an besonders reinen Mittelfraktionen von CCl₄ aus und erhielt bei einer Verunreinigungskorrektur von nur 0,036° einen korrigierten Schmelzpunkt von — 22,75 \pm 0,03° C.

							and the second se
Nr.	x_2	$t \ (^{\circ} C)$	Beobachter	Nr.	x_2	t (° C)	Beobachter
19	0.07540	11 499	Marra	16	0.07597	4 995	1 ma ald
12	0,07540	17 974	mann	10	0,07007	4,525	21771010
1	0,10740		,,	0	0,09210	- 4,070	,,
4	0,27497	- 19,082	,,		0,12057		"
13	0,30858	- 20,324	"	0	0,15117		**
9	0,30873	20,259	,,	6	0,18238	-7,735	"
3	0,31393	- 20,414	,,	7	0,21489	- 9,390	,,
8	0,33877	- 18,966	,,	15	0,24215	-10,976	,,
14	0,34083	-18,859	,,	14	0,29423	-15,151	,,
7	0,37086	-19,250	,,		0,29423	-18,95	,,
10	0,39146	-19,778	"	13	0,32547	18,47	**
11	0,40577	— 19,775	,,	1	0,32547	-18,927	,,
4	0,46579	— 21,613	,,	12	0,33103	— 18,975	,,
5	0,50179	-22,220	,,	8	0,33441	-20,45	,,
6	0,52548	-22,578		11	0,33666	— 19,060	••
15	0.57493	-23,172		10	0,34891	-19,211	••
				9	0.36697	-19,488	••
25	0.00618	0.648	Kohler		0.36697	-25,42	.,
19	0.00955	-1.003		27	0.42657	-20.440	Kohler
22	0.01291	-1.372		26	0.46024	-21.045	
18	0.01581	1.728	Arnold	29	0.49318	-21.741	,,
23	0.01678	- 1.821	Kohler	30	0.55318	-23.246	,,
24	0.02041	- 2,236		28	0.58470	-24.276	77
2± 1	0.02041	3 145	Armold	20	0,00110	-1,-10	,,
17	0,02500	- 3,140	11/10000				
17	0,04070		"				
4	0.00400	±.V/1	••				

Tabelle 1. Schmelzpunkte des Systems Wasser (1)-Triäthylamin

durchgeführt, beanspruchen daher besonders bei tiefen Temperaturen nicht dieselbe Genauigkeit wie die Messungen von Arnold und Kohler. Zudem zeigte sich bei allen Munnschen Meßpunkten, mit Ausnahme von 12, 1 und 2, nach Durchführung der Messung eine Trennung der Flüssigkeit in zwei Phasen, wie sie erst bei 30-40° höheren Temperaturen erfolgen sollte. Dieses Phänomen konnte trotz erneuter Reinigung des Triäthylamins und trotz Ausspülen der Apparatur mit CO2-freiem Stickstoff nicht ausgeschaltet werden und wir haben keine Erklärung dafür. Dennoch stimmen die Munnschen Resultate im Primärkristallisationsbereich der Verbindung mit den später gewonnenen im wesentlichen überein. Ganz anders liegen jedoch die Munnschen Meßpunkte 12, 1, 2, 13, 9 und 3 im Primärkristallisationsbereich von Wasser. Offensichtlich bildete sich hier eine andere, bei diesen Temperaturen instabile Eismodifikation. Es liegt nahe, an das kubische Eis VIII¹⁶ zu denken, dessen Entstehung des öfteren in Gegenwart organischer Stoffe beobachtet werden konnte, meist allerdings bei Temperaturen zwischen - 30° C und - 40° C. Doch lassen sich nicht alle sechs Meßpunkte 12, 1, 2, 13, 9 und 3 mit einer Modifikation konstanter Schmelzwärme interpretieren. Da ja die Aktivität des Wassers in der flüssigen Phase auf Grund der späteren Messungen mit genügender Genauigkeit bekannt ist, müßten sich sonst aus allen sechs Meß-

¹⁶ H. Gränicher, Z. Kristallographie **110**, 432 (1958). Vgl. auch A. S. Quist und H. S. Frank, J. Physic. Chem. **65**, 560 (1961).

H. 4/1961] Zur Thermodynamik des Systems Wasser-Triäthylamin 881

punkten übereinstimmende Werte für Schmelzwärme und Schmelzpunkt der unbekannten Modifikation errechnen lassen. Es treten also noch zusätzliche Effekte auf, sei es, daß die Schmelzwärme der Modifikation stark mit der Temperatur variiert, sei es, daß die Punkte ab Meßpunkt 2 einer anderen Modifikation der Verbindung zuzuordnen sind. Eigenartigerweise stand auch das von Munn beobachtete Verhalten bei der Kristallisation im Gegensatz zu den weiter unten beschriebenen Erfahrungen von Arnold und Kohler. Bei den Meßpunkten 12, 1, 2, 13, 9 und 3 traten starke Unterkühlungen auf, wäh-

Abb. 1. Das Schmelzdiagramm von Wasser(1)—Trläthylamin bis zu $x_2 = 0, 6$. \bigcirc Meßpunkte von Arnold und Kohler, \boxdot Meßpunkte von Munn, I Kontrollmessungen mit den eingeschmolzenen Mischungen der Univ. Bristol, + Meßpunkte von Somerville, × Meßpunkte von Pickering. Die Meßpunkte der letzten beiden Autoren sind der besseren Übersicht wegen nur unvollständig eingetragen

rend die Kristallisation bei den anderen Meßpunkten, besonders bei den Punkten 8, 14, 7, 10 und 11 fast ohne Unterkühlung einsetzte. Dieses Verhalten, zugleich mit der Lage der Munnschen Schmelzpunkte, führte uns zunächst zu der Annahme¹⁷ einer kongruent schmelzenden Verbindung Et₃N · 2 H₂O. — Es fällt schwer, eine plausible Erklärung dafür zu finden, daß bei Munn bei den wasserreichen Konzentrationen immer instabile Bodenkörper auftraten, bei Arnold und Kohler nie. Vielleicht war bei Munn irgendeine Verunreinigungsspur im Triäthylamin, die bei den späteren Versuchen fehlte, für die Kristallisation der instabilen Bodenkörper maßgebend; vielleicht lenkte auch eine schadhafte Stelle an der Verchromung des magneti-

¹⁷ Diese Annahme wurde von *R.J. Munn* in einem Vortrag bei dem Symposium über Thermodynamik der IUPAC, Fritzens-Wattens, August 1959, mitgeteilt, kann aber nach den jetzt vorliegenden Messungen nicht mehr aufrechterhalten werden. schen Rührers, die wir bei den Munnschen Versuchen mit Absicht wegen ihrer kristallisationsauslösenden Wirkung so beließen, die Kristallisation in die andere Richtung.

Es besteht die Absicht, die Versuche zur Festlegung der Natur der instabilen Bodenkörper fortzusetzen, eventuell durch Heranziehen der Mischungssysteme, bei denen das kubische Eis VIII bereits beobachtet wurde. Angesichts der erstaunlichen Tatsache, daß über die Existenzbereiche der bei niederem Druck auftretenden Eismodifikationen fast nichts bekannt ist, wollten wir doch schon unsere vorläufigen Beobachtungen berichten.

Arnold und Kohler konnten die Verbindung nur erhalten, indem sie das Meßgefäß mit der Mischung direkt in ein Trockeneis-Alkoholbad eintauchen ließen, also plötzlich und sehr stark unterkühlten. Wurde das Meßgefäß im Thermostaten belassen und dessen Temperatur allmählich gesenkt, so kristallisierte schließlich nach bedeutenden Unterkühlungen Eis aus. Je nach der Art der Kühlung war es Arnold möglich, bei den Meßpunkten 14, 13, 12, 8, 11, 10 und 9 wahlweise Eis oder Verbindung als Bodenkörper zu erhalten. Bei Punkt 14 wandelte sich die Verbindung in Gegenwart von Schmelze bei einem gut definierten, wegen der Anwesenheit von vielen Kristallen aber doch nur mit einer Sicherheit von \pm 0,01° meßbaren Haltepunkt in Eis um, bei Punkt 13 schmolz sie klar auf. Im letzteren Fall handelt es sich also um die instabile Fortsetzung der Schmelzkurve der Verbindung. Die in Punkt 13, 8 und 9 gemessenen Schmelzpunkte des Eises (das in den beiden letzteren Punkten als Bodenkörper nicht thermodynamisch stabil ist) konnten nur visuell bestimmt werden, die Erwärmungskurven zeigten hier keinen auswertbaren Knick mehr an:

Auf Grund des Meßpunktes 14 (Beobachtung der peritektischen Reaktion in Gegenwart von Schmelze) ist es einwandfrei sichergestellt, daß die Verbindung in ihrer Zusammensetzung einem kleineren Molenbruch an Amin entsprechen muß als $x_2 = 0.294$. Also sind als Molverhältnisse in der Verbindung die Verhältnisse 5 H2O:2 Et3N, 3 H2O:Et3N und allenfalls noch 4 H₂O: Et₃N denkbar. Um zwischen diesen Möglichkeiten zu entscheiden, analysierten wir das Primärkristallisat. Dabei bedienten wir uns der in Abb. 2 skizzierten Apparatur. Bei horizontaler Halterung wurden in den U-förmigen Teil etwa 30 ccm Mischung eingebracht. Starke lokale Unterkühlung löste die Kristallisation aus, die dann im Thermostaten möglichst dicht unterhalb des Schmelzpunktes bzw. der peritektischen Temperatur unter Schütteln weitergeführt wurde. Durch eine Schwenkung der Apparatur um 90° konnte anschließend im Thermostaten die Mutterlauge durch die Glasfritte in den einen Teil des Doppelgefäßes abgelassen werden; der andere Teil des Doppelgefäßes nahm das danach aufgeschmolzene Kristallisat auf. Einsatz, Mutterlauge und Kristallisat wurden durch Titration mit konstant siedender Salzsäure bis zur sauren Reaktion und Rücktitration mit 1 n Natronlauge gegen einen Mischindikator (vgl. die Arbeit von Kohler und Rice¹⁰) analysiert. Die

Ergebnisse waren: Eine eingesetzte Mischung von $x_2 = 0,333$ ergab ein Kristallisat von $x_2 = 0,290$ und eine Mutterlauge von $x_2 = 0,375$. Eine zweite Mischung von $x_2 = 0,291$ ergab ein Kristallisat von $x_2 = 0,272$ und eine Mutterlauge von $x_2 = 0,309$. Daß sich die Kristallisation unterhalb des Peritektikums nicht so lenken läßt, daß reines Primärkristallisat ausfällt, ist verständlich. Immerhin ist die Annäherung zum Molenbruch

 $x_2 = 0.25$ augenfällig. Die Zusammensetzung $5 H_2O: 2 Et_3N$ ist durch die Analysenergebnisse mit Sicherheit ausgeschlossen, die Zusammensetzung $4 H_2O: Et_3N$ läßt sich auch auf Grund der Mengenverhältnisse Kristallisat und Mutterlauge bei den entsprechenden Temperaturen mit größter Wahrscheinlichkeit ausschließen.

Angesichts der Tatsache, daß die Bestimmungen von Munn ein gänzlich anderes Bild für die Schmelzkurve ergeben haben, lag uns daran, die Schmelzkurve mit Mischungen nachzuprüfen, die auf Grund zusätzlicher Kriterien als weitgehend frei von Verunreinigungen anzusprechen waren. Solche Mischungen standen an der Universität von Bristol zur Verfügung, wo sie zur Bestimmung der Entmischungskurven angefertigt wurden. Diese Mischungen waren in Quarzgefäßen eingeschmolzen, zeigten Entmischungstemperaturen, die praktisch vollkommen mit den Angaben von Kohler und $Rice^{10}$ übereinstimmten, und zeigten dieselben Entmischungstemperaturen auch zwei Jahre nach ihrer Anfertigung. Leider konnten ihre Schmelzpunkte nicht genau bestimmt werden, weil keine Rührung vorgesehen war; es wur-

Abb. 2. Apparatur zur fraktionierten Kristallisation bei tieferen Temperaturen

den also die Mischungen in ihren Quarzgefäßen in einen Thermostaten gebracht, bei dessen Temperatur in allen Mischungen Kristalle gegenwärtig waren. Dann wurde die Temperatur des Thermostaten ganz langsam gesteigert, und jeweils die Temperatur notiert, wo bei Schütteln des Quarzgefäßes die letzten Kristalle einer Mischung verschwanden. Auch diese Messungen sind in Abb. 1 vermerkt, zugleich mit ihren mutmaßlichen Fehlergrenzen. Sie bestätigen die Messungen von Arnold.

III. Thermodynamische Auswertung der Schmelzkurve im Primärkristallisationsbereich des Wassers

Die Ausrechnung der dekadischen Logarithmen der Aktivitätskoeffizienten des Wassers erfolgte nach folgender Gleichung⁴:

$$\log f_1 = -1,1492 \frac{\Delta T}{T} + 0,003565 \frac{\Delta T^2}{T} + \partial \log f_1 / \partial T \cdot \Delta T - \log x_1$$

Hierbei ist für die Schmelzwärme L'' = 1436,3 cal/mol und für die Differenz der spezifischen Wärmen am Schmelzpunkt $\Delta C_{p}'' = = 8,911$ cal/gradmol eingesetzt¹⁸.

Ein größeres Problem bot die korrekte Berücksichtigung der Funktion $\partial \log f_1/\partial T$, da der entsprechende Term bei diesem System stark ins Gewicht fällt. Als verläßlichste Bestimmung sahen wir die Vermessung der Entmischungskurve¹⁰ an, woraus Werte für ΔG_z für 18,3° C abgeleitet⁵ wurden, allerdings nur im Konzentrationsbereich $0,5 \leq x_1 \leq 1$. Nun wurden daraus Werte für die Aktivitätskoeffizienten berechnet, indem mit einer geeigneten Tangentenkonstruktion zunächst aus der Funktion $\Delta G_z/(x_1x_2)$ die Funktionen $\Delta G_{z,1}/x_2^2$ bzw. $\Delta G_{z,2}/x_1^2$ gewonnen wurden; auf diese Weise konnten die partiellen zusätzlichen freien Mischungsenthalpien recht genau angegeben werden. Die so für 18,3° C berechneten log f_i sowie die Funktionen log $f_i/(1 - x_i)^2$ sind in Tab. 2 zusammen-

Tabelle 2. Die aus der Entmischungskurve für 18,3°C berechneten Aktivitätskoeffizienten des Systems Wasser (1)-Triäthylamin

x_2	$\log f_1$	$\log f_1/x_2^2$	$\log f_2$	$\log f_2/x_1^2$
0,02	0,0025	6,258	1,595	1,661
0,04	0,0125	7,796	1,2626	1,370
0,08	0,0298	4,664	0,9903	1,170
0,16	0,0684	2,672	0,6950	0,985
0,24	0,1128	1,958	0,5158	0,893
0,32	0,1580	1,543	0,3986	0,862
0,40	0,2098	1,311	0,3082	0,856
0,48	0.2719	1,180	0,2296	0,849

gestellt. Als nächstes wurde eine Beziehung zwischen $\partial \log f_1/\partial T \approx \Delta \log f_1/\Delta T$ und der partiellen Mischungswärme des Wassers für eine feste Temperatur, z. B. 10° C aufgestellt. Dabei mußte der Temperaturabhängigkeit der Mischungswärme näherungsweise Rechnung getragen werden. Mangels genauerer Daten wurde aus den Messungen der Entmischungskurve bei höheren Temperaturen¹⁹ die Temperatur abgeschätzt, bei welcher beide Ränder der Entmischungskurve vertikale Tangenten besitzen (wobei es natürlich unsicher ist, ob wirklich beide Ränder der Entmischungskurve bei derselben Temperatur vertikale Tangenten be-

¹⁸ F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine und I. Jaffe, Selected Values of Chemical Thermodynamic Properties, Circular 500 of the Natl. Bur. of Stand., Washington 1952.

¹⁹ V. Rothmund, Z. physik. Chem. 26, 459 (1898).

sitzen²⁰). Diese Temperatur, für die dann die Mischungswärmen, integrale wie partielle, verschwinden, wurde zu 70° C angenommen. Ferner wurde bis dahin der Temperaturverlauf der Mischungswärme als linear betrachtet. Damit ergibt sich

$$\Delta H_t = \Delta H_{10} (1, 167 - t/60)$$

und

$$\frac{\partial \log f_1}{\partial T} = -\frac{(\Delta H_1)_t}{R \ (273,15+t)^2} = -\frac{(\Delta H_1)_{10}}{341400} (1,167-0,0252 t),$$

wobei t die Temperatur in °C bedeutet. Wird ein Differenzenquotient gebildet, so ist für t die mittlere Temperatur des Intervalls einzusetzen. Es wurden nun Werte für $(\Delta H_1)_{10}$ vorgegeben — orientierende Bestimmungen der Mischungswärme standen ja zur Verfügung^{7, 8, 9} — und damit aus der Schmelzkurve log f_1 -Werte für 0° C errechnet. Diese konnten dann im Verein mit den von früher her bekannten Werten von log f_1 bei 18,3° C benützt werden, um den vorgegebenen Wert von $(\Delta H_1)_{10}$ zu kontrollieren. Auf diese Weise wurden konsistente Werte von $(\Delta H_1)_{10}$ erhalten.

Die so gewonnenen Mischungswärmen, die für 10°C gelten, sind in Abb. 3 wiedergegeben. Die partielle Mischungswärme des Wassers ΔH_1 wurde über $x_2 = 0.366$ hinaus extrapoliert, wobei bis $x_2 = 0.5$ darauf Bedacht genommen wurde, daß die Extrapolation mit den $\log f_1$ -Werten für 18,3° C und den extrapolierten $\log f_1/x_2^2$ -Kurven für 0° C konsistent ist. Auf Grund der über den ganzen Konzentrationsbereich extrapolierten ΔH_1 -Kurve konnte mittels der Gibbs-Duhem-Gleichung auch die partielle Mischungswärme des Triäthylamins und daraus auch die integrale Mischungswärme angegeben werden. Nach Beendigung der Berechnungen erhielten wir Kenntnis von den Ergebnissen einer neuen experimentellen Bestimmung der partiellen Mischungswärmen¹² bei 15° C. Diese neuen Daten sind ebenfalls in Abb. 3 vermerkt. Die im allgemeinen ausgezeichnete Übereinstimmung kann als Beweis der Korrektheit unserer log /1-Werte für 0° C und für 18,3° C gewertet werden. Die einzige Diskrepanz tritt zwischen $x_2 = 0.03$ und $x_2 = 0.09$ auf, wo zwischen dem steilen Anstieg der partiellen Mischungswärme des Wassers bei kleinen Zusätzen von Amin und dem flacheren Anstieg für größere Aminkonzentrationen nach unseren Berechnungen ein Maximum auftritt, das nach den Messungen von Matizen und Kuskova¹² abgeflacht ist. Diese Diskrepanz kann auf kleinen Fehlern unserer Berechnung von $\log t_1$ bei 18,3° C beruhen, weil sich gerade in diesem Konzentrationsbereich log f_1/x_2^2 sehr stark ändert, sie kann aber auch auf einem besonderen Verlauf der Temperaturabhängigkeit der Mischungswärme in diesem

²⁰ Vgl. G. Kortüm und P. Haug, Z. Elektrochem. 60, 355 (1955).

Abb. 3. Die partiellen und integralen Mischungswärmen von Wasser(1)—Triäthylamin. Ausgezogene Kurven: Berechnet für 10°C, wie im Text beschrieben. +, \oplus Meßpunkte von *Matizen* und *Kuskova* für ΔH_1 bzw. ΔH_2 für 15°C

Tabelle 3. Die aus der Schmelzkurve für 0°C berechneten Aktivitätskoeffizienten des Systems Wasser (1)-Triäthylamin

<i>x</i> ₂	$\log f_1$	$\log f_1/x_2^2$	log f ₂	$\log f_2/x_1^2$
0,02	0,00004	0,100	1,28980	1,3430
0,04	0,00458	2,863	1,14991	1,2477
0,08	0,02071	3,237	0,88660	1,0475
0,12	0,03712	2,577	0,73696	0,9516
0,16	0,05410	2,113	0,63013	0,8930
0,20	0,07200	1,800	0,54835	0,8568
0,24	0,09100	1,580	0,48082	0,8324
0,28	0,11038	1,408	0,42557	0,8209
0,32	0,13160	1,285	0,37598	0,8131
0,36	0,15350	1,184	0,33343	0,8140
0,40	0,17728	1,108	0,29461	0,8184
0,44	0,20464	1,057	0,25863	0,8247
0,48	0,23500	1,020	0,22301	0,8247
0,50	0,25250	1,010	0,20530	0,8212
0,55	0,29808	0,985	0,16407	0,8102
0,60	0,34767	0,966	0,12739	0,7962

Konzentrationsbereich beruhen, der bewirkt, daß das Maximum in ΔH_1 erst bei tieferen Temperaturen hervortritt.

In Tab. 3 sind die mit den ΔH_1 -Werten der Abb. 3 berechneten $\log f_1$ für 0° C angegeben. Die zugehörige $\log f_1/x_2^2$ -Kurve ist in Abb. 4 dargestellt. Die Extrapolation von 0,366 bis 0,5 wurde, wie schon bei der Besprechung der Mischungswärmen erwähnt, konsistent mit der Extrapolation von ΔH_1 und den $\log f_1$ -Werten bei 18,3° C vorgenommen. Dann

Abb. 4. Die Funktion log f_1/x_z^2 von Wasser(1)—Triäthylamin für 0°C. Der strichlierte Teil ist extrapoliert, wie im Text beschrieben

wurde bei $x_1 = 0.5$ mittels der $\log f_2$ -Werte für 18.3° C und ΔH_2 ein Wert von $\log f_2$ für 0° C vorgegeben, und daraus die $\log f_2$ für die Konzentrationen zwischen $x_1 = 0.5$ und $x_1 = 1$ mittels der Duhem-Margules-Gleichung berechnet. Die $\log f_2/x_1^2$ -Kurven ließen sich verhältnismäßig sicher noch bis zu $x_1 = 0.4$ extrapolieren, woraus wieder nach der Duhem-Margules-Gleichung auch noch die entsprechenden Werte von $\log f_1$ gewonnen wurden. Alle so berechneten Werte sind in Tab. 3 vermerkt.

Des Auffallendste an dem Konzentrationsverlauf der $\log f_i$ ist der plötzliche Anstieg der $\log f_1/x_2^2$ -Kurve bei $x_2 = 0,04$, der von schwach negativen bis zu extrem hohen positiven Werten führt. Ein ähnliches, wenn auch nicht so extremes Verhalten ist schon von *Munn* und *Kohler*³ gefunden worden. So stieg die $\log f_1/x_2^2$ -Kurve im System 1,2,4-Trichlorbenzol(1)—n-Hexan bei $x_2 = 0,17$ von dem Wert 0,47 recht sprunghaft auf den Wert 0,56, während $\log f_1/x_2^2$ im System Anilin(1)—Cyclohexan bei $x_2 = 0.05$ von etwa 0,3 sogar auf fast 1,6 anstieg. Schließlich folgt aus den von Kohler⁴ nach Literaturdaten berechneten Aktivitätskoeffizienten im System Wasser(1)—Dioxan ein allerdings etwas allmählicherer Anstieg von log f_1/x_2^2 bei Konzentrationen zwischen $x_2 = 0.10$ und $x_2 = 0.15$ von -0.33 auf +0.54.

Diese auffallenden Änderungen in den Werten für $\log t_1/x_2^2$ stehen mit früheren Beobachtungen²¹ in Übereinstimmung, wonach die $\Delta G_z/(x_1x_2)$ -Kurve im Bereich überwiegender Konzentration der Komponente mit der höheren Kohäsionsenergie die Tendenz zur Ausbildung eines Maximums besitzt. Von Kohler und Neckel²² wurde die Ansicht vertreten, daß dieses Verhalten nicht mit speziellen Eigenschaften der Komponenten zusammenhängt, sondern durch den allgemeinen Aufbau der Flüssigkeiten begründet ist. Zunächst konnte Neckel²³ zeigen, daß das geschilderte Mischungsverhalten zu erklären wäre durch die Annahme, daß ein gewisser Prozentsatz der Moleküle in der Flüssigkeit "gasartig" vorliegt, d. h. als Moleküle mit der Koordinationszahl Null. Bei Zusatz der Komponente mit der geringeren Kohäsionsenergie werden deren Moleküle zunächst in besonders starkem Maße unter den "gasartigen" Molekülen zu finden sein, wodurch es anfänglich nur zu einer geringen Wechselwirkung kommt. Erst wenn bei stärkeren Zusätzen dieser Komponente auch deren Moleküle auf die Plätze mit hoher Koordinationszahl gedrängt werden, wird die positive Wechselwirkung bedeutend. Zu einer ganz ähnlichen Erklärung gelangt man, wenn man an Stelle von gasartigen Molekülen eine verhältnismäßig hohe Konzentration von Löchern molekularer Größe annimmt²⁴. Hier wird die Rolle der "gasartigen" Moleküle von denjenigen Molekülen übernommen, die den Löchern benachbart sind und deren Koordinationszahl daher wesentlich erniedrigt ist. Jedoch ist die Voraussetzung einer relativ hohen Konzentration von Löchern molekularer Größe nicht haltbar²⁵. Um dennoch zu genügend vielen Plätzen mit deutlich erniedrigter Koordinationszahl zu gelangen, vertraten Kohler

²¹ Vgl. die in den Anm. 3 und 5 zitierten Arbeiten.

²² F. Kohler und A. Neckel vorgetragen bei der 57. Hauptversammlung der Deutschen Bunsengesellschaft für physikalische Chemie, Würzburg, Mai 1958. Der Vortrag wurde jedoch aus den in Anm. 28 dargelegten Gründen nicht veröffentlicht.

²³ A. Neckel, in Korrespondenzen mit F. Kohler aus dem Jahre 1955. Eine Veröffentlichung unterblieb, da Neckel das Modell einer Flüssigkeit, in der ein willkürlicher Prozentsatz der Moleküle als "gasartig", der Rest als "kristallin" angesehen wird, doch als zu unrealistisch empfand. Inzwischen wurde jedoch ein ähnliches Modell zur quantitativen Interpretation der thermodynamischen Eigenschaften reiner Flüssigkeiten entwickelt [H. Eyring und Mitarbeiter, Proceedings Natl. Acad. Sciences 44, 683 (1958); 45, 1594 (1959); 46, 333 und 336 (1960)].

 ²⁴ F. Kohler, in Korrespondenzen mit A. Neckel aus dem Jahre 1955.
²⁵ Vgl. S. A. Rice, J. Chem. Physics 24, 357 (1956).

und Neckel²² die Annahme²⁶, daß in einer Flüssigkeit innere Oberflächen existieren, vergleichbar den Korngrenzen in polykristallinem Material, nur daß sie noch kleinere Bereiche umschließen²⁷. Die quantitative Durchrechnung dieses Modells für Mischungen war nicht absolut überzeugend. Vor allem müßte aber eine Anreicherung der einen Komponente an den inneren Oberflächen - wenn sich die beiden Komponenten im Streuvermögen für Röntgenstrahlen genügend unterscheiden - ähnlich einer Gelstruktur zu einem Effekt in der Röntgenkleinwinkelstreuung Anlaß geben. Da ein Kontrollversuch völlig negativ verlief²⁸, mußte auch dieses Modell aufgegeben werden. Es bleibt also nur der Schluß, daß es in Flüssigkeiten Plätze verschiedener Energie (verschiedener Koordinationszahl) gibt, wobei die Plätze höchster Energie (geringster Koordination) den Orten stärkster Fehlordnung im Quasigitter der Flüssigkeit entsprechen: diese Plätze werden in Mischungen bevorzugt von Molekülen der Komponente niederer Verdampfungsenergie besetzt. Andererseits müssen aber die Plätze verschiedener Energie doch so stark vermischt sein, daß dadurch keine merkbare Strukturierung auftritt²⁹. Wenn auch eine quantitative Behandlung dieses Modells noch aussteht, so mag dieses Bild doch zum Verständnis der thermodynamischen Eigenschaften des Systems Wasser-Triäthylamin beitragen:

Setzt man zum Wasser wenig Amin zu, so werden die ersten Aminmoleküle bevorzugt auf die Plätze geringster Koordination, höchster Fehlordnung des Wasser, gitters" gewiesen. Dort können sie mit den Wassermolekülen Wasserstoffbrückenbindungen bilden, ohne gleichzeitig mit den hydrophoben Äthylresten in zu starke endotherme Wechselwirkung mit anderen Wassermolekülen zu geraten. Daher der stark exotherme Anstieg der Mischungswärme und die schwach negativen Werte von log f_1/x_2^2 . Bei weiterem Zusatz von Amin muß dieses nun auch Plätze

²⁹ In gewisser Weise entspricht das dem Bild von J. D. Bernal, Nature [London] 183, 141 (1959).

Monatshefte für Chemie, Bd. 92/4

²⁶ Einen andern Weg zur Berücksichtigung von Löchern, die von kleinerer als molekularer Größe sind, gingen C. R. Mueller und D. C. Stupegia, J. Chem. Physics **26**, 1522 (1957).

²⁷ Dasselbe Bild wurde in einer Arbeit von F. Kohler, J. Chim. Physique **1957**, 902, gebraucht.

²⁸ Für die Durchführung dieses Versuches sowie für die Beurteilung des Ergebnisses sind wir Herrn Professor Dr. O. Kratky, Herrn Professor Dr. G. Porod und Frau Dr. A. Sekora sehr verbunden. Es wurde eine Mischung von 1,2,4-Trichlorbenzol (1)—n-Hexan des Molenbruches $x_2 = 0,20$ untersucht. Nach den Rechnungen von Kohler und Neckel²² hätte dann an den inneren Oberflächen eine Anreicherung des Hexans auf etwa $x_2 =$ = 0,50 erfolgen müssen, und die Oberflächen hätten Bereiche umschließen müssen, deren Durchmesser in der Größenordnung von 100 bis 1000 Å gelegen wäre. Der negative Ausgang dieses Versuches war auch der Grund, von einer Veröffentlichung des Modells abzusehen.

höherer Koordination besetzen. Das bedingt einen engeren Kontakt zwischen den hydrophoben Äthylresten und den Wassermolekülen, was sich nicht nur in einem jähen Abschwächen der exothermen Zunahme der Mischungswärme, sondern besonders in einer Einschränkung der möglichen Konfigurationen der Wassermoleküle äußert: daher der starke Anstieg von log f_1/x_2^2 . Auf Grund des entworfenen Bildes ist auch verständlich, daß der sprunghafte Anstieg von log f_1/x_2^2 bei Wasser—Triäthylamin besonders deutlich ausgeprägt ist, bei Wasser—Dioxan wegen der zwei hydrophilen Kontaktstellen des Dioxans verflacht ist, und ebenso daß derselbe Effekt bei Anilin—Cyclohexan wesentlich stärker als bei Trichlorbenzol—Hexan hervortritt.

IV. Thermodynamische Auswertung der Schmelzkurve im Primärkristallisationsbereich der Verbindung

Der Auswertung der Schmelzkurve der Verbindung liegt dieselbe Gleichung zugrunde wie der Auswertung der Schmelzkurve des Wassers:

$$\log a_V = -\frac{L''}{2,303 RT_f} \cdot \frac{\Delta T}{T} + \frac{\Delta C_p''}{4,606 RT_f} \cdot \frac{\Delta T^2}{T}$$

Dabei ist die Aktivität der Verbindung a_V für die jeweilige Schmelztemperatur T der betreffenden Mischung zu nehmen. Der zweite Term der rechten Seite, mit der Differenz der spezifischen Wärmen von fester und flüssiger Phase der Verbindung, wurde als kleiner Korrekturterm zunächst vernachlässigt. Ferner ist $\Delta T = T_f - T$, wobei T_f den hypothetischen Schmelzpunkt der Verbindung bedeutet, wenn keine Dissoziation im flüssigen Zustand stattfände. Nun wurde das Dissoziationsgleichgewicht angeschrieben

$$K = a_W^3 a_A / a_V$$

Hier wurden an Stelle der Indizes 1 und 2 wie auch später die Indizes W(asser) und A(min) verwendet. Die Aktivitäten a_W und a_A sind auf Grund der Berechnungen und Extrapolationen des vorhergehenden Abschnittes für den Konzentrations- und Temperaturbereich, in dem die Schmelzkurve der Verbindung bestimmt wurde, bekannt. Die Dissoziationskonstante K bzw. log K muß explizit als temperaturabhängig betrachtet werden:

$$(\log K)_T = (\log K)_{T_f} + \frac{\Delta H}{2,303 RT_f T} (T - T_f)$$

Darin bedeutet ΔH die Dissoziationswärme der Verbindung. So erhält man

$$3\log a_W + \log a_A = (\log K)_{T_f} - \frac{\Delta H + L''}{2,303 RT_f} \frac{T_f}{T} + \frac{\Delta H + L''}{2,303 RT_f}$$

H. 4/1961] Zur Thermodynamik des Systems Wasser-Triäthylamin 891

Trägt man daher $3 \log a_W + \log a_A$ gegen 1/T auf, so soll man eine Gerade erhalten, deren Steigung durch $(\Delta H + L'')/2,303 R$ gegeben ist, während deren Ordinatenabschnitt durch $(\Delta H + L'')/(2,303 R T_f) +$ $+ (\log K)_{T_f}$ bestimmt ist. Diese Gerade ist in Abb. 5 strichliert dargestellt. Die Punkte streuen zwar ein bißchen, doch ist zu beachten, daß nicht nur genaue Schmelzpunktsbestimmungen, sondern auch sehr genaue

Abb. 5. Zur thermodynamischen Auswertung der Schmelzkurve der Verbindung. \odot ---- für $\Delta C_p'' = 0$, \Box ---- für $\Delta C_p'' = 10$ cal/gradmol. Der Punkt \times entspricht der Zusammensetzung der Verbindung und einer Temperatur von ---18,20° C

Aktivitätskoeffizienten notwendig sind, damit sich ein solcher Auftrag überhaupt durchführen läßt. Aus der strichlierten Geraden berechnet sich für $\Delta H + L'' = 6390$ cal/mol, und für den Ordinatenabschnitt folgt ein Wert von 5,096. Diese Werte sind auf wenige Prozent genau. Aus dem Ordinatenabschnitt kann log K für T_f nur berechnet werden, wenn der hypothetische Schmelzpunkt der ohne Dissoziation schmelzenden Verbindung vorgegeben wird. Aus Gründen, die unten erörtert werden, ist für diesen hypothetischen Schmelzpunkt eine Temperatur zwischen 256° K und 258° K anzunehmen. Wir haben im folgenden 257° K (= --16,15° C) in die Rechnung eingesetzt. Damit folgt für (log K)_{Tf} = = --0,338.

Eine Verminderung der Streuung der Punkte um die Gerade der Abb. 5 ist zu erwarten, wenn man einen von Null verschiedenen Wert für $\Delta C_p''$ berücksichtigt. Wir haben daher für das $\Delta C_p'' = 10$ cal/gradmol angesetzt und nun an Stelle von $3 \log a_W + \log a_A$ den Ausdruck

$$3\log a_W + \log a_A - \frac{\Delta C_p''}{4,606 RT_f} \frac{\Delta T^2}{T}$$

gegen 1/T aufgetragen. Das ist die ausgezogene Gerade der Abb. 5. Man sieht, daß sie den Meßpunkten besser entspricht. Wir haben sie daher im folgenden allein berücksichtigt. Aus ihr folgt für $\Delta H + L'' = 6827$ cal/ mol und ein Ordinatenabschnitt von 5,471, der mit $T_f = 257$ zu $(\log K)_{T_f} = -0,334$ führt. Um zu veranschaulichen, welche Unsicherheit aus der Abschätzung von T_f folgt, sei noch gesagt, daß nach derselben Geraden (in Wirklichkeit würde sich auch diese ein wenig ändern, da T_f über ΔT in den mit $\Delta C_p''$ proportionalen Korrekturterm eingeht) aus $T_f = 256$ ein Wert von $(\log K)_{T_f} = -0,357$ folgen würde.

Da sich aus den Aktivitätskoeffizienten bei — 16,15° C und $x_A = 0,25$ für $3 \log a_W + \log a_A = -0,3565$ errechnet, so folgt mit

$$\log K = 3 \log a_W + \log a_A - \log a_V = -0,334$$

für die Aktivität der Verbindung ein Wert von $\log a_V = -0.0225$ bzw. $a_V = 95,00$. Der Ausdruck $3 \log a_W + \log a_A$ hängt sehr stark von der Temperatur ab, z. B. beträgt er für 0° C -0,2232. Da anzunehmen ist, daß a_V mit der Temperatur eher abnehmen wird, muß log K mindestens dieselbe Temperaturabhängigkeit zeigen wie $3 \log a_W + \log a_A$. Setzt man für 0° C den höchstmöglichen Wert $a_V = 1$, log $a_V = 0$ ein, so erhält man $\log K = -0.2232$ und daraus eine Dissoziationswärme $\Delta H = 2205$ cal/mol, während aus dem vermutlich immer noch zu großen Wert $a_V = 0.95$ bzw. $\log a_V = -0.0225$ iür 0° C $\log K = -0.2007$ folgt und damit $\Delta H = 2650$ cal/mol. Es ist daher wahrscheinlich, daß ΔH zwischen 2650 und 3000 cal/mol liegt. Für L" bleibt dann ein Wert bei etwa 4000 cal/mol, was immer noch recht hoch erscheint. Doch wäre eine wesentliche Verringerung des Wertes nur möglich, wenn schon bei den tiefen Temperaturen a_V radikal mit der Temperatur abnimmt. Dies erscheint aber auch unabhängig von der nachfolgenden Diskussion wenig wahrscheinlich.

Jetzt seien noch die Argumente zur Abschätzung von T_f nachgebracht. Extrapoliert man die instabile Schmelzkurve der Verbindung oberhalb der peritektischen Temperatur, so kommt man für $x_A = 0.25$ zu einer Schmelztemperatur zwischen — 18,5° C und — 18,2° C. T_f muß also auf alle Fälle höher liegen. Eine obere Schranke für T_f läßt sich folgendermaßen finden: Es sind weiter unten Angaben gemacht, welcher Prozentgehalt an Amin frei bzw. an Wasser gebunden ist, Angaben, die auf Grund des langwelligen Abfalles der Lichtabsorption für 0° C und 15° C gefunden

wurden. Extrapoliert man diese Angaben für $x_A = 0.25$ auf -18.2° C, so erhält man 13,5% freies Amin. Wären im Wasser nur Einermoleküle vorhanden, so würde daraus ein Molenbruch der Verbindung $\xi_V = 0.61$ resultieren. Da aber auch die Wassermoleküle zu einem großen Teil assoziiert sind und dadurch eine Verringerung der Zahl der molekularen Einheiten eintritt, ist ξ_V sicher noch größer. Bei Benützung des ebenfalls später diskutierten *Eucken*schen Wassermodells erhält man $\xi_V = 0.716$. Da das System Wasser-Triäthylamin trotz der Verbindungsbildung stark positive Abweichungen vom Raoultschen Gesetz aufweist, ist auch ohne Kenntnis der Gleichgewichtsbeziehungen zwischen Verbindung und reinen Komponenten unbedingt damit zu rechnen, daß die Aktivitätskoeffizienten der Verbindung größer als Eins sind (tatsächlich ergibt sich auf Grund der Gleichgewichtsbeziehungen, die wir hier nicht benützen dürfen, da sonst ein Zirkelschluß vorläge, $a_V = 0.95$). ξ_V stellt daher eine untere Grenze für a_V dar. Setzt man nun log ξ_V an Stelle von log a_V in die Gleichung für die Schmelzkurve der Verbindung (wobei L'' == 4000 cal/mol gesetzt wurde) ein, so erhält man eine sicher zu große Gefrierpunktserniedrigung von $\Delta T = 11,2$ und damit eine obere Grenze für $T_f = -18.2 + 11.2 = -7.0^{\circ}$ C.

Eine andere Möglichkeit der Abschätzung von T_i ergibt sich aus der Überlegung, daß die hypothetische Schmelzkurve des Mischsystems Verbindung— Amin für den Fall fehlender Dissoziation der Verbindung in flüssigem Zustand die reale Schmelzkurve für höhere Aminkonzentrationen immer stärker approximieren wird. Wesentliche Abweichungen zwischen hypothetischer und realer Schmelzkurve werden nur für hohe Konzentrationen der Verbindung zu erwarten sein. Es wurde daher versucht, den Ausdruck

$$\frac{-\mathrm{d}T}{\mathrm{d}_{\gamma_{\mathfrak{s}}}}\frac{1}{RT^2} = \frac{1}{L'}\left(1+k_{\gamma_{\mathfrak{s}}}+\ldots\right)$$

gegen χ_2 , den Molenbruch von Amin im Mischsystem Verbindung—Amin ohne Berücksichtigung einer Dissoziation der Verbindung $\left(\text{also } \chi_2 = \frac{4 x_2 - 1}{3 x_2} \right)$ aufzutragen. Dieser Ausdruck sollte für die hypothetische Schmelzkurve den Ordinatenabschnitt 1/L'', für die reale Schmelzkurve natürlich den Ordinatenabschnitt Null besitzen und sollte dann bis zu höheren χ_2 linear mit χ_2 verlaufen. In ganz ähnlicher Weise wurde in früheren Arbeiten die Schmelzwärme bestimmt^{3, 30}. Abweichungen vom linearen Verlauf werden bedingt durch folgende Effekte: Nichtparabolischer Verlauf des Logarithmus des Aktivitätskoeffizienten der Komponente, die sich im Gleichgewicht mit der festen Phase befindet, starker Einfluß der Temperaturabhängigkeit der Aktivitätskoeffizienten und schließlich — bei hohem χ_2 — Einfluß der höheren als quadratischen Glieder in der Entwicklung von ln $(1 - \chi_2)$ bzw. von $1/(1 - \chi_2)$. Leider sind diese Effekte, welche die Abweichungen vom linearen Verlauf bedingen, bei unserem Mischsystem besonders bedeutend, so daß der Vorteil des Auftrags des angegebenen Ausdruckes weitgehend verlorengeht.

³⁰ F. Kohler, Mh. Chem. **91**, 1113 (1960).

Immerhin folgt aus der Auswertung der in Abb. 6 gezeigten Kurve für das hypothetische Mischsystem Verbindung—Amin ein $t_{f} = -14,0^{\circ}$ C. Die

Abb. 6. Zur Abschätzung von T_{f} der Verbindung

Kurve ist bis auf folgende Gesichtspunkte willkürlich angenommen: Ordinatenabschnitt wurde $1/_{4000}$ gesetzt, die Anfangssteigung wurde — einem

Aktivitätskoeffizienten wesentlich größer als Eins entsprechend — stark negativ gewählt, und für höhere x2 sollte die reale Kurve approximiert werden. Versucht man andere Kurven nach diesen Gesichtspunkten zu zeichnen, und integriert die dadurch bestimmten $dT/d\chi_2$ -Werte bis zu $\chi_2 = 0$, so variieren die daraus folgenden t_f -Werte kaum um mehr als 2°. Daß die Kurve in ihrem Gesamtverlauf nicht unvernünftig, in ihrer Anfangsneigung eher noch zu flach angenommen ist, folgt aus einem Vergleich mit Abb. 7, wo $\Delta T/(R T_f T x_2)$ gegen x_2 aufgetragen ist, wie es sich aus den in Abschnitt II besprochenen Daten ergibt. Abschließend kann gesagt werden, daß unsere Annahme $T_f = 257^{\circ} \text{ K} (t_f =$ = - 16,15° C) kaum unsicherer sein dürfte als auf 2,0°. Da es in den folgenden Rechnungen weniger auf die

genauen Zahlenwerte als auf die möglichen qualitativen Schlußfolgerungen ankommt, können wir uns damit zufrieden geben.

V. Die Verbindungsbildung als Austauschreaktion zwischen Assoziaten. Das Euckensche Wassermodell

Zwei Umstände veranlassen uns, die Verbindungsbildung als Austauschreaktion

$$(H_2O)_4 + Et_3N = 3 H_2O \cdot Et_3N + H_2O$$

von einem Einermolekül des Wassers und einem Triäthylaminmolekül im Viererkomplex des Wassers anzusehen. Das ist erstens die Tatsache, daß die Verbindung drei Wassermoleküle enthält bei nur einem Kontaktpunkt des Aminmoleküls. Die Wassermoleküle der Verbindung müssen daher aneinander gebunden sein und es ist nicht einzusehen, warum sie das nicht auch ohne Gegenwart des Aminmoleküls sein sollten. Zweitens spricht der neutrale Wert der Dissoziationskonstanten (entsprechend einer Änderung der freien Enthalpie bei der Dissoziation bei 257°K von $\Delta G = 393$ cal/mol) in Verbindung mit der doch bedeutenden Dissoziationswärme von knappen 3000 cal/mol gegen die Tatsache, daß es sich bei der Verbindungsbildung um die Entstehung einer neuen Wasserstoffbrückenbindung handelt. Denn bei der Bildung einer Wasserstoffbrückenbindung sollte — ähnlich wie bei dem Orientierungsbeitrag zweier idealer Dipole die gesamte Enthalpieänderung ΔH gerade den doppelten Wert der Änderung der freien Enthalpie ΔG betragen³⁰. Würde in unserem Fall der kleine Wert von ΔG schon eine unerklärlich schwache Wasserstoffbrückenbindung anzeigen, so deutet erst recht der nicht doppelt, sondern siebenmal so große Wert von ΔH auf einen komplexeren Mechanismus der Verbindungsbildung hin.

Andererseits liegt der Gedanke nahe, daß bei einer Austauschreaktion das Viererassoziat des Wassers eine wesentliche Rolle spielt. Nach Eucken⁶ stellt es eine der wesentlichen Assoziatformen des Wassers dar, nach Wicke, Eigen und Ackermann⁸¹ ist die bei der Eigendissoziation des Wassers entstehende positive Ladung vornehmlich mit dem Viererassoziat verbunden. Die Frage ist nun, wieweit die Formulierung der Verbindungsbildung als Austauschreaktion die Diskrepanz zwischen den ΔG - und ΔH -Werten für die Dissoziation der Verbindung plausibel machen kann. Zur Beantwortung der Frage müssen quantitative Angaben für die Assoziation des reinen Wassers eingesetzt werden. Dazu bietet sich das Euckensche Modell an.

Es ist klar, daß gerade bei einer Flüssigkeit von so kompliziertem Aufbau wie Wasser kein völlig befriedigendes Modell zu finden sein wird. Vor allem bestehen immer grundsätzliche Bedenken gegen die Wiedergabe der zwischenmolekularen Wechselwirkung durch chemische

³¹ E. Wicke, M. Eigen und Th. Ackermann, Z. physik. Chem. N. F. 1, 340 (1954).

Gleichgewichte³² zwischen verschieden hohen Assoziaten. Es ist vielleicht zweckmäßig, daran zu erinnern, daß ein Assoziat nicht als isolierte (kinetische) Einheit zu denken ist, sondern nur als die Gruppe von Molekülen, die zueinander in definierter Weise orientiert sind⁶. Natürlich stehen auch die Assoziate in starker zwischenmolekularer Wechselwirkung zu andern Molekülen und Assoziaten, und auch diese Wechselwirkung sollte zu den thermodynamischen, optischen und anderen Eigenschaften der Flüssigkeit beitragen. Man unterschlägt aber diesen Beitrag bzw. bezieht ihn in die Beschreibung des chemischen Gleichgewichtes mit ein, wenn man alle Eigenschaften aus dem Assoziationsverhalten heraus erklären will. Doch ist bei Wasser die Bildung definierter Assoziate voraussichtlich mit wesentlich stärkeren Energieeffekten gekoppelt als die zusätzlichen zwischenmolekularen Wechselwirkungen, und daher kann man das Euckensche Modell wohl als die geeignete erste Näherung zur quantitativen Beschreibung des Geschehens im Wasser ansehen. Wie Gierer und Wirtz³³ zeigen konnten, ergeben sich viele Parallelen zwischen der Euckenschen Betrachtungsweise und dem älteren Wassermodell von Bernal und Fowler, und vieles spricht für einen erheblichen Wahrheitsgehalt des Euckenschen Modells. Die Ablehnung, die es durch Wang³⁴ auf Grund seiner Messungen des Selbstdiffusionskoeffizienten des Wassers erfahren hat, dürfte auf einem Mißverständnis des Begriffes "Assoziat" beruhen. Solange keine zwingenden Gründe dafür sprechen, daß das Euckensche Modell zu einem falschen Bild führt, erscheint es uns besser, dieses Modell zu verwenden, als auf den Versuch einer quantitativen Beschreibung zu verzichten.

Eucken⁶ gibt Molenbrüche für die Einermoleküle, Zweier-, Vierer- und Achterassoziate des Wassers für Temperaturen zwischen 0° C und 200° C an, und zwar nach zwei ein wenig differierenden Berechnungen a) und b). Danach wurden die Gleichgewichtskonstanten für die Wasserassoziation

$$K_{12} = \frac{\gamma_2}{\gamma_1^2}$$
 $K_{124} = \frac{\gamma_4}{\gamma_1^2 \gamma_2}$ $K_{48} = \frac{\gamma_8}{\gamma_4^2}$

berechnet und deren Logarithmus gegen 1/T aufgetragen, einerseits um die Assoziationswärmen zu bestimmen, andererseits um auf $-16,15^{\circ}$ C extrapolieren zu können. Die berechneten Größen für diese Temperatur sind in Tab. 4 zusammengestellt. Zunächst sieht man, daß für die Bildung des Zweier- und auch noch des Viererassoziates tatsächlich ΔH etwa den doppelten Wert von ΔG besitzt. Bei der Bildung des Achterassoziates geht in ΔH offenbar ein erheblicher zusätzlicher Entropieverlust ein, weil das Achterassoziat der voluminösen Eisstruktur entspricht. Dann fällt auf, daß ΔH_{12} durchaus den Werten für eine starke

³² Wegen der Schwierigkeiten der Abgrenzung zwischen einem Reaktionsgeschehen zwischen "chemischen" Spezies und "physikalischen" Wechselwirkungseffekten vgl. auch J. H. Hildebrand und R. L. Scott, The Solubility of Nonelectrolytes, 3rd ed., New York 1950, bes. S. 194ff.

³³ A. Gierer und K. Wirtz, Z. Naturforsch. 5a, 577 (1950).

³⁴ J. H. Wang, J. Amer. Chem. Soc. **73**, 510 und 4181 (1951); vgl. auch J. H. Wang, C. V. Robinson und I. S. Edelman, J. Amer. Chem. Soc. **75**, 466 (1953).

H. 4/1961] Zur Thermodynamik des Systems Wasser-Triäthylamin 897

Wasserstoffbrückenbindung entspricht, daß aber schon die Ankopplung von zwei weiteren Wasserstoffbrückenbindungen zum Viererassoziat die durchschnittliche Enthalpie einer Brückenbindung vermindert, und daß dieser Effekt besonders stark wird, wenn sich zwei Viererassoziate unter Ausbildung dreier zusätzlicher Brückenbindungen zum Achterassoziat vereinigen.

Tabelle 4. Die nach Eucken berechneten Gleichgewichtskonstanten, Enthalpien und Freien Enthalpien (in cal/mol) für die Bildung der Wasserassoziate bei — 16,15°C

Desidier	Tedan	Eı	ickensche Be	er. a)	Berechnung b)			
Reaktion	Index	K	ΔH	ΔG	K	ΔH	ΔG	
$2 H_2 O = (H_2 O)_2$	12	40,603	4678		55,98		2055	
$(H_2O)_2 + 2H_2O = (H_2O)_4$	124	41,805	6578	1906	60,53	-6260	-2098	
$2 (H_2O)_4 = (H_2O)_8$	48	3,262	-3211	604	4,656	-3656	- 786	

Um das Gleichgewicht zwischen den Wasserassoziaten auch im Mischsystem in analoger Weise beschreiben zu können, muß angenommen werden, daß der (wahre) Aktivitätskoeffizient eines Wassermoleküls unabhängig davon ist, in welchem Wasserassoziat es sich befindet. Diese Annahme ist höchstwahrscheinlich gerechtfertigt³⁵. Es ist daher beispielsweise

$$K_{124} = \frac{a_4}{a_1^2 a_2} = \frac{\xi_4 \,\varphi_4}{\xi_1^2 \,\varphi_1^2 \,\xi_2 \,\varphi_2} = \frac{\xi_4 \,\varphi_1^4}{\xi_1^2 \,\varphi_1^2 \,\xi_2 \,\varphi_1^2} = \frac{\xi_4}{\xi_1^2 \,\xi_2 \,\varphi_1^2}$$

Dabei ist die Bezeichnungsweise die folgende: a_1 ist die Aktivität der Einermoleküle, a_2 die der Zweierassoziate usw., während die Aktivität der beiden Komponenten Wasser und Triäthylamin im Mischsystem mit a_W bzw. a_A bezeichnet wird. Die Molenbrüche der einzelnen Spezies im reinen Wasser werden mit γ_1 , γ_2 usw., im Mischsystem mit ξ_1 bis ξ_8 ,

³⁵ Eine Beeinflussung der Gleichgewichtsbeziehungen zwischen den verschiedenen Wasserassoziaten durch Zusatz von Triäthylamin wäre am ehesten im Sinne der "Eisberg"-Theorie von H.S. Frank und M. W. Evans, J. Chem. Phys. **13**, 507 (1945), zu erwarten. Danach sollte also bei Zusatz von organischen Molekülen eine Bevorzugung von eisartigen Strukturen im Wasser, im Euckenschen Modell also der Achterassoziate, eintreten. Wir haben dementsprechend einige Berechnungen analog zu den Tab. 6 und 7 ausgeführt, bei denen die Gleichgewichtskonstante K_{48} so angesetzt wurde, daß sie mit einer Potenz des Molenbruchs von Triäthylamin zunahm. Setzt man jedoch die Abhängigkeit von der Aminkonzentration sehr stark an, so ergeben sich Folgerungen für den Verlauf der Mischungswärme, die den Beobachtungen erheblich widersprechen. Eine schwache Abhängigkeit von K_{48} von der Aminkonzentration würde zwar zu durchaus vernünftigen Folgerungen führen, doch ergeben sich keine grundsätzlich neuen Gesichtspunkte, welche die größere Kompliziertheit des Ansatzes rechtfertigen.

 ξ_V und ξ_A bezeichnet, während die Molenbrüche der beiden Komponenten x_W und x_A genannt werden. Schließlich soll φ_i der Aktivitätskoeffizient einer Spezies sein, hingegen $f_W = a_W/x_W$ bzw. $f_A = a_A/x_A$ der Aktivitätskoeffizient der entsprechenden Komponente.

Zum zweiten soll vorausgesetzt werden, daß nur die Einermoleküle zum Dampfdruck ernstlich beitragen. Die Veränderung des Partialdruckes im Mischsystem und damit a_W wird also nur von der Aktivität der Einermoleküle bestimmt (diese Voraussetzung gibt uns erst das Recht, von einer Aktivität des "Wassers" zu sprechen):

$$a_W = a_1/\gamma_1$$

Damit läßt sich nun die Konstante K_a des Austauschgleichgewichtes schreiben:

$$K_a = \frac{a_V a_1}{a_4 a_A} = \frac{a_V}{a_W^3 a_A \gamma_1^3 K_{124} K_{12}} = \frac{1}{K \gamma_1^3 K_{124} K_{12}}$$

Hiebei ist K ohne Index die im vorigen Abschnitt bestimmte Dissoziationskonstante. K_a läßt sich danach sofort ausrechnen. Es ist für 257° K nach der Euckenschen Berechnung a) log $K_a = -0,0017$, nach der Berechnung b) log $K_a = -0,060$. Die Reaktionswärme der Austauschreaktion ΔH_a kann von der entsprechenden Änderung der freien Enthalpie ΔG_a nicht wesentlich verschieden sein, da solche Austauschreaktionen praktisch ohne Entropieänderung verlaufen, und wurde daher gleich $\Delta G_a = -RT \cdot \ln K_a$ gesetzt [d. i. 2 cal/mol nach Berechnung a) bzw. 71 cal/mol nach Berechnung b)]. Da ΔH_{12} , ΔH_{124} und die Temperaturabhängigkeit von γ_1 bekannt sind, läßt sich nun die Dissoziationswärme berechnen. Das Ergebnis ist $\Delta H = 3167$ cal/mol nach Berechnung a) bzw. $\Delta H = 2625$ cal/mol nach Berechnung b), in vorzüglicher Übereinstimmung zu unserer Abschätzung von knappen 3000 cal/mol.

VI. Konzentrationen und Aktivitätskoeffizienten der einzelnen Spezies in der Mischung. Spektroskopische Untersuchungen

Um Aussagen über die Aktivitätskoeffizienten der einzelnen Spezies machen zu können, mußten zunächst Anhaltspunkte über ihre Konzentrationsverhältnisse gewonnen werden. Diese schienen am ehesten aus einer Untersuchung des langwelligen Abfalls der UV-Absorption des Triäthylamins in Abhängigkeit von Temperatur und Konzentration erhältlich. Der langwellige Teil der Absorption beruht auf einer Anregung eines Elektrons in nichtbindendem Zustand und die Absorption wird gelöscht, wenn das einsame Elektronenpaar des Triäthylamins blockiert wird, etwa durch eine Wasserstoffbrückenbindung.

Die Untersuchungen wurden mit einem UNICAM-Spektrophotometer SP-500 mit thermostatierbarem Küvettengehäuse bei 260–320 m μ , vor-

898

nehmlich aber bei 270 m μ ausgeführt. Um noch serienmäßige Küvetten benützen zu können, mußte dieses Gebiet des steilen Abfalles der Absorption gewählt werden. Die aminreichen Mischungen wurden in 2 mm-Küvetten, wasserreiche Mischungen in 10 und auch in 50 mm-Küvetten gemessen. Eine Serie von Bestimmungen wurde ohne Thermostatierung

bei einer Zimmertemperatur von 16,3°C aufgenomzweite men, eine mit Thermostatierung bei einer effektiven Temperatur der flüssigen Mischungen von 1,5° C. Im ersten Fall war, besonders bei höheren Schichtdicken, schon der Einfluß der Streuung durch Clusterbildung knapp unterhalb des unteren kritischen Punktes zu beobachten, im zweiten Fall war es sehr schwierig, ein Anlaufen der Küvetten zu verhindern. Trotz Durchleiten eines kräftigen trockenen Gasstromes durch das Küvettengehäuse waren bei den aminreichen Konzentrationen oft nur die

ersten Messungen reproduzierbar. Die Absorptionskurve des reinen Triäthylamins zeigte übrigens eine auffallend starke Temperaturabhängigkeit (die Kurve verlief bei tiefen Temperaturen wesentlich flacher, ein Verhalten, das durch Untersuchungen von Lösungen in Hexan bestätigt wurde), so daß es unbedingt erforderlich war, die reine Komponente bei denselben Temperaturen zu messen.

Der auf diese Weise ermittelte Prozentgehalt an freiem Triäthylamin ist — umgerechnet auf 0° C und 15° C — in Abb. 8 und Tab. 5 wieder-

Tabelle 5. Die auf Grund des langwelligen Abfalls der Ultraviolettabsorption ermittelten Prozentgehalte an freiem Triäthylamin in Mischungen mit Wasser

x _A		0,0068	0,0314	0,1148	0,2448	0,3018	0,3708	0,4477	0,5646
% freies Amin	bei $15^{\circ}C$ bei $0^{\circ}C$	$1,9 \\ 0,9$	$7,5 \\ 2,5$	$\frac{37}{16}$	$55 \\ 35$	$61,5 \\ 45,5$	$\begin{array}{c} 70 \\ 59 \end{array}$	77 (69)	87 (82)

gegeben. Die mutmaßliche Fehlergrenze für die einzelnen Bestimmungen möchten wir mit $\pm 2\%$ angeben.

Zur Berechnung der Molenbrüche und Aktivitätskoeffizienten der einzelnen Spezies wurde nun folgendermaßen vorgegangen: Zunächst wurden verschiedene Werte von ξ_1 vorgegeben und aus den *Eucken*schen Gleichgewichtsbedingungen die zugehörigen Werte von ξ_2 , ξ_4 und ξ_8 errechnet. Dann wurde $\xi_A + \xi_V = 1 - \xi_1 - \xi_2 - \xi_4 - \xi_8$ gebildet. Danach wurde das Verhältnis $\xi_A/(\xi_A + \xi_V)$ unter der Voraussetzung bestimmt, daß in der auf Grund des Austauschgleichgewichts gültigen Gleichung

$$\xi_A = \left(\xi_A + \xi_V\right) / \left(1 + K_a \frac{\varphi_A \varphi_1^3}{\varphi_V} \frac{\xi_4}{\xi_1}\right)$$

der Quotient ($\varphi_A \varphi_1^3/\varphi_V$) gleich Eins gesetzt werden konnte. Die so ermittelten Verhältnisse $\xi_A/(\xi_A + \xi_V)$ sind ebenfalls in Abb. 8 vermerkt. Vergleicht man damit die spektroskopisch bestimmten Werte, so sieht man sofort, daß die Quotienten ($\varphi_A \varphi_1^3/\varphi_V$) für kleine Aminkonzentrationen große Werte annehmen müssen, während sie für große Aminkonzentrationen gegen Eins streben. Die Rechnung bestätigt dies. Praktisch wurde dabei folgendermaßen vorgegangen: Für vorgegebenes ξ_1 wurden verschiedene Quotienten ausprobiert und die zugehörigen Prozentgehalte an freiem Amin sowie x_A berechnet, bis schließlich ein Punkt auf der spektroskopisch festgelegten Kurve approximiert wurde. Da sich φ_1 und φ_A nach

$$\varphi_1 = \frac{f_1 x_1 \gamma_1}{\xi_1} \qquad \varphi_A = \frac{f_A x_A}{\xi_A}$$

berechnen lassen, sind somit alle Aktivitätskoeffizienten der Spezies zugänglich. Die Rechnung wurde für 0°C und 15°C sowohl nach Berechnung a) wie nach Berechnung b) ausgeführt. Schwerwiegende Unterschiede zwischen den Ergebnissen nach den beiden Berechnungsarten bestehen nicht. Tab. 6 und Tab. 7 zeigt das Ergebnis nach Berechnung b) für 0°C bzw. für 15°C, während die Aktivitätskoeffizienten der einzelnen Spezies nach beiden Berechnungsarten in Abb. 9 für 0°C, in Abb. 10 für 15°C graphisch wiedergegeben sind. Abb. 11 bringt noch den Konzentrationsverlauf der Molenbrüche der einzelnen Spezies für 0°C nach Berechnung b). Ergänzend sei noch gesagt, daß der auffallendste Unterschied zwischen den beiden Berechnungsarten in dem Temperaturgang von a_V aufscheint. Für $x_2 = 0,25$ ist nach Berechnung a) bei 0°C $a_V = 0,90$ [0,95 nach b)] und bei 15°C $a_V = 0,77$ [0,86 nach b)].

Folgende Punkte sollen hervorgehoben werden:

1. In aminreichen Mischungen ist φ_V nahe an φ_1^3 , d. h. die Verbindung vermittelt kaum die Löslichkeit von Wasser in Amin. Demgegenüber ist in wasserreichen Mischungen φ_V um Größenordnungen kleiner als φ_A , d. h. die Verbindung vermittelt sehr stark die Löslichkeit von Amin in Wasser.

900

H. 4/1961] Zur Thermodynamik des Systems Wasser-Triäthylamin 901

2. Die Konzentration der Verbindung sinkt sehr schnell mit steigender Temperatur.

3. Die Variation von a_V mit der Konzentration ist bei 15° C über einen weiten Konzentrationsbereich praktisch Null, wie es knapp unter der kritischen Temperatur zu erwarten ist.

Tabelle 6. Modellmäßige Berechnung der Molenbrüche und Aktivitätskoeffizienten der einzelnen Spezies in Wasser-Triäthylamin bei 0°C [Berechnung b]]. $K_a = 0.8810$

x_A	Ę1	Ęg	£ 4	ξ ₈	[£] A	ξγ	φι	°A	¢γ	a _V
0,0000	0,1232	0,5019	0,2227	0,1520	0,0000	0.0000				
0,0253	0,1200	0,4762	0,2004	0,1231	0,0020	0,0783	1.00	231,4	8,95	0,701
0,0687	0,1140	0,4298	0,1633	0,0817	0,0167	0,1945	1,05	36,00	4,48	0,871
0,1258	0,1050	0,3646	0,1175	0,0423	0,0595	0,3111	1,12	11,09	2,96	0,921
0,1752	0,0960	0,3048	0,0821	0,0207	0,1171	0,3793	1,22	5,92	2,48	0,941
0,2188	0,0870	0,2503	0,0554	0,0094	0,1812	0,4167	1,33	3,96	2,28	0,950
0,2671	0,0770	0,1961	0,0340	0,0035	0,2698	0,4196	1,49	2,74	2,28	0,955
0,3216	0,0670	0,1484	0,0195	0,0012	0,3773	0,3866	1,69	2,02	2,45	0,947
0,4265	0,0570	0,1074	0,0102	0,0003	0,5602	0,2649	1,94	1,31	3,46	0,917
0,5655	0,0470	0,0730	0,0047	0,0001	0,7219	0,1533	2,34	1,28	5,91	0,906
0,7653	0,0370	0,0453	0,0018		0,8672	0,0487	(2,74)	(0, 97)	(15, 4)	(0,750)
0,8844	0,0270	0,0241	0,0005	*	0,9328	0,0156				

Tabelle 7. Modellmäßige Berechnung der Molenbrüche und Aktivitätskoeffizienten der einzelnen Spezies in Wasser-Triäthylamin bei 15°C [Berechnung b)]. $K_a = 0.8892$

x _A	ξ ₁	Ę2	Ęı	. ^و ھ	ξ _A	ξŗ	φı	φA	φV	a _V
0,0000	0,1584	0,5307	0,2131	0.0979	0,0000	0.0000				
0,0501	0,1500	0,4761	0,1716	0,0634	0,0258	0,1131	1,04	27,71	7,32	0,828
0,1009	0,1410	0,4206	0,1340	0,0387	0,0854	0,1804	1,09	8,98	4,75	0,857
0,1505	0,1320	0,3686	0,1028	0,0228	0,1570	0,2177	1,17	4,92	3,95	0,861
0,2439	0,1140	0,2751	0,0573	0,0071	0,2985	0,2480	1,35	2,60	3,47	0,860
0,2929	0,1050	0,2340	0,0412	0,0037	0,3760	0,2402	1,47	2,10	3,60	0,866
0,3463	0,0960	0,1950	0,0288	0,0018	0,4568	0,2216	1,58	1,75	3,88	0,859
0,4053	0,0870	0,1602	0,0194	0,0008	0,5380	0,1944	1,75	1,50	4,44	0,862
0,4809	0,0770	0,1255	0,0119	0,0003	0,6287	0,1566	1,94	1,29	5,46	0,855

4. φ_1 und φ_A nehmen mit der Temperatur ab, φ_V steigt nur für große Konzentrationen der Verbindung mit *T*. Die starke Zunahme von f_W und f_A mit der Temperatur beruht also auf dem Temperaturgang der Gleichgewichte, was recht befriedigend ist.

Als nächstes wurde versucht, mit den so berechneten Molenbrüchen der einzelnen Spezies die Mischungswärme zu berechnen, und zwar unter der Annahme, daß die Mischungswärme nur durch die Zahl der gelösten bzw. gebildeten Wasserstoffbrückenbindungen der diversen Assoziate bedingt sei. Das Ergebnis dieser Berechnung zeigt Abb. 12. Ein Vergleich mit Abb. 3 zeigt, daß die Mischungswärme sowohl größenordnungsmäßig richtig als auch dem Konzentrationsverlauf nach vernünftig wiedergegeben wird. Eine genaue Übereinstimmung mit dem Experiment kann ohnedies nicht verlangt werden, da doch auch ein Effekt der zwischen den

Abb. 9. Die berechneten Aktivitätskoeffizienten der einzelnen Spezies im System Wasser-Triächylamin bei 0°C. Die mit aufwärtsgerichteten Strichen markierten Punkte beziehen sich auf Berechnung a), die mit abwärtsgerichteten Strichen versehenen Punkte auf Berechnung b)

einzelnen Assoziaten und Einermolekülen wirksamen Wechselwirkungen zu erwarten ist. Die Tatsache, daß sich die mit Wasserstoffbrückenbindungen verbundenen großen Energiebeträge nach unserer Berechnung gerade richtig kompensieren, läßt wohl auf einen erheblichen Wahrheitsgehalt unseres Modells schließen.

Etwas schwieriger dürfte die Interpretation der Volumkontraktion beim Mischen sein. Ein Teil der Volumkontraktion ist auf die Verringerung der Zahl der voluminösen Achteraggregate beim Mischungsprozeß zurückzuführen, der größere Teil des Effekts ist aber wohl mit der Verbindungsbildung in Zusammenhang zu bringen. Die Schwierigkeit ist nur, daß die Konzentration der Verbindung mit der Temperatur stark abnimmt, die Volumkontraktion jedoch kaum. Vermutlich ist auch dies eine Äußerung der zwischenmolekularen

Effekte, die in unserem Modell vernachlässigt werden.

Betrachtet man die letzte Zeile von 0,9 Tab. 6, so fällt auf, daß in so aminreichen Mischungen Einermoleküle des Wassers, Zweierassoziate und Verbindung in vergleichbaren Mengen vorliegen sollten, 0,8 während die Zahl der höheren Wasserassoziate zu vernachlässigen ist. Dieser 0,7 Umstand ließ es möglich erscheinen, im Infraroten für die drei Spezies charak-15 0,6 0,5 10 0,4 0,3 0,2 .5 0,1 0,5 11 Ò 0,2 0,4 0,6 T_A x_A Abb. 10 Abb. 11

Abb. 10. Die für 15° C berechneten Aktivitätskoeffizienten der einzelnen Spezies im System Wasser-Triäthylamin. Die Bezeichnungsweise ist "analog Abb. 9 Abb. 11. Die Molenbrüche der einzelnen Spezies im System Wasser-Triäthylamin in Abhängigkeit von der Gesamtkonzentration an Amin [0° C, Berechnung b)]

teristische Maxima der OH-Valenzschwingung zu erhalten. Das Ergebnis der Aufnahmen ³⁶ der aminreichen Mischungen in 25 μ - bzw. 100 μ -BaF₂-

903

³⁶ Die Aufnahmen verdanken wir Herrn Dr. J. Derkosch, dem wir auch für viele Ratschläge in spektroskopischen Fragen verbunden sind.

Küvetten mit einem Perkin-Elmer-Spektrometer 21 mit Flußspatoptik zeigt Abb. 13 und Abb. 14. Das Maximum bei 3675 cm⁻¹ ist den freien OH-Schwingungen zuzuschreiben, während wir das Maximum bei 3160 cm⁻¹ als charakteristisch für die Wasserstoffbrückenbindung in einem isolierten Zweierassoziat ansehen möchten. Die Enthalpie dieser Bindung sollte durchaus einer Verschiebung von ca. 500 cm⁻¹ entsprechen. Jede Ankopplung an diese Bindung — sei es in definierter Orientierung zu einem

höheren Assoziat oder zur Verbindung, sei es in loserer Wechselwirkung erniedrigt die Enthalpie der Bindung und verkleinert die Frequenzverschiebung. Es ist daher nicht zu verwundern, wenn zwischen den beiden Extremen — freie OH-Gruppen und isolierte Zweierassoziate — verschiedene Bindungsenergien der Wasserstoffbrücken realisiert sind; in diesen Zwischenbereich fällt daher die Hauptabsorption von reinem Wasser, aber auch von nicht zu verdünntem Wasser in einem beliebigen Lösungsmittel; ebenso leider auch die Absorption der Triäthylamin— Wasser-Verbindung, die ja ebenfalls einen größeren Komplex von energetisch gleichwertigen Wasserstoffbrückenbindungen darstellt³⁷.

³⁷ Das Verhalten von Wasser in Triäthylamin, das eine Cluster-Bildung der Wassermoleküle fördert, kann nicht in Parallele gesetzt werden zu dem Verhalten in Lösungsmitteln, in denen offenbar primär eine Solvatation isolierter Wassermoleküle eintritt. Zu diesen Lösungsmitteln, denen eine stärkere Polarisierbarkeit gemeinsam sein dürfte, zählt Dioxan, Pyridin und Acetonitril [vgl. E. Greinacher, W. Lüttke und R. Mecke, Z. Elektrochem. 59, 23 (1955)].

906 F. Kohler u. a.: Thermodynamik des Systems Wasser-Triäthylamin

Den Herren Professor Dr. H. Nowotny, Doz. Dr. A. Preisinger, Dr. A. Neckel und Dr. T. Schönfeld sowie Frau Dr. N. Konopik sind wir für wertvolle Diskussionen verpflichtet. Fräulein L. Baumann danken wir für ihre Mithilfe bei den Berechnungen.

Der eine von uns (F. K.) dankt dem "Theodor-Körner-Stiftungsfond zur Förderung von Wissenschaft und Kunst" für die Unterstützung seiner Arbeiten, *H. Arnold* ist dem Staatssekretariat für Hochschulwesen der Deutschen Demokratischen Republik für die Finanzierung eines Gastaufenthaltes sehr zu Dank verpflichtet, während *R. J. Munn* dem Österreichischen Bundesministerium für Unterricht sowie dem Department of Scientific and Industrial Research, London, für die Ermöglichung eines einjährigen Stipendienaufenthaltes Dank sagt.

Anmerkung bei der Korrektur: Bei der Korrektur lag den Autoren die vollständige Arbeit von *Counsell* (vgl. Anm. 11) vor, die überdies dilatometrische, konduktometrische und viskosimetrische Messungen umfaßt. Hier soll nur darauf hingewiesen werden, daß *Counsell* für geringe Aminkonzentrationen, wo nach unseren Befunden $\log f_w/x_A^2$ ein Minimum aufweist, ein stark ausgeprägtes Maximum in der Leitfähigkeit fand.